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ABSTRACT
There is increasing interest in applying learning methods to 
networks, both to uncover the inherent unknowns in the 
system (through online bandit learning) and to tackle complex 
stochastic decision problems (through reinforcement 
learning). However, due to the unique network environment, 
directly using standard learning methods is often inadequate. 
For one, exploring options/arms across a 
communication network often involves significant 
overhead. The corresponding switching cost can 
significantly degrade the regret of bandit learning. For 
another, reinforcement learning methods treating the 
whole system as a large-scale MDP (Markov Decision 
Process) overlook the decentralized nature of network 
operation. As a result, the learned policy is often difficult to 
interpret and adapt slowly to changes. Thus, we argue that 
there is a significant need to revisit and improve learning 
methods for networks, possibly by borrowing ideas from 
network theory. 
Specifically, I will talk about two of our recent studies in this 
direction. In the first work, motivated by the need to select ML 
(machine learning) models at a capacity-constrained edge 
server, we study online bandit learning with switching costs. 
We show a surprising "power-of-2-arms" effect, i.e., by 
having access to the feedback of two ML models at a time, our 
proposed learning algorithm can reduce the regret from 
$O(T^{2/3})$ to $O(T^{1/2})$. In the second work, motivated 
by stochastic decision problems for minimizing the age-of-
information over multi-channel wireless networks, we propose 
a new concept of partial index that significantly extends the 
traditional Whittle index, which can be used to decompose the 
associated large-scale MDP and to produce scalable, easy-to-
interpret, and adaptive solutions.
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