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ABSTRACT
The recent success of neural networks in pattern 
recognition and classification problems suggests that 
neural networks possess qualities distinct from other 
more classical classifiers, such as SVMs or boosting 
classifiers. This paper studies the performance of plug-
in classifiers based on neural networks in a binary 
classification setting as measured by their excess risks. 
Compared to the typical settings imposed in the 
literature, we consider a more general scenario that 
resembles actual practice in two respects: first, the 
function class to be approximated includes the Barron 
functions as a proper subset, hence smooth functions, 
and second, the neural network classifier constructed is 
the minimizer of a surrogate loss instead of the 0-1 loss 
so that gradient descent-based numerical optimizations 
can be easily applied. We study the estimation and 
approximation properties of neural networks to obtain a 
dimension-free, uniform rate of convergence. In the 
analysis of the estimation error, we obtain a novel result 
that relates the approximate excess risk to the 
approximate excess ϕ-risk, which is of interest on its 
own. Finally, we show that the rate obtained is, in fact, 
minimax optimal up to a logarithmic factor, and the 
lower bound obtained shows the effect of the margin 
assumption in this regime.




